Analysis, simulation, and experimental studies of YAG and CO2 laser- produced plasma for EUV lithography sources

نویسنده

  • A. Hassanein
چکیده

Efficient laser systems are essential for the realization of high volume manufacturing in extreme ultraviolet lithography (EUVL). Solid-state Nd:YAG lasers usually have lower efficiency and source suppliers are alternatively investigating the use of high power CO2 laser systems. However, CO2 laser-produced plasmas (LPP) have specific characteristics and features that should be taken into account when considering them as the light source for EUVL. The analysis of recent experimental and theoretical work showed significant differences in the properties of plasma plumes produced by CO2 and the Nd:YAG lasers including EUV radiation emission, source formation, debris generation, and conversion efficiency. The much higher reflectivity of CO2 laser from liquid, vapor, and plasma of a tin target results in the production of optically thinner plumes with higher velocity and in a better formation of plasma properties (temperature and density values) towards more efficient EUV source. However, the spikes in the temporal profiles of current CO2 laser will additionally affect the properties of the produced plasma. We have developed unique combination of state-ofthe art experimental facilities (CMUXE Laboratory) and advanced computer simulation (HEIGHTS) package for studying and optimizing various lasers, discharge produced plasmas (DPP), and target parameters as well as the optical collection system regarding EUV lithography. In this work, detailed characteristics of plasmas produced by CO2 and Nd:YAG lasers were analyzed and compared both experimentally and theoretically for optimizing EUV from LPP sources. The details of lower overheating of plasma produced by CO2 laser are given with time and explain how to utilize the high reflectivity of such lasers in plasmas produced in different target geometries to significantly enhance the conversion efficiency of EUV radiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative study on EUV and debris emission from CO2 and Nd: YAG laser-produced tin plasmas

The emission characteristics of debris from laser-produced tin plasma were investigated for an extreme ultraviolet lithography (EUV) light source. The ions and droplets emitted from tin plasma produced by a CO2 laser or an Nd: YAG laser were detected with Faraday cups and quartz crystal micro-balance (QCM) detectors, respectively. A higher ion kinetic energy and a lower droplet emission were ob...

متن کامل

Effects of Plasma Spatial Profile on Conversion Efficiency of Laser Produced Plasma Sources for EUV Lithography

Extreme ultraviolet (EUV) lithography devices that use laser produced plasma (LPP), discharge produced plasma (DPP), and hybrid devices need to be optimized to achieve sufficient brightness with minimum debris generation to support the throughput requirements of High-Volume Manufacturing (HVM) lithography exposure tools with long lifetime. Source performance, debris mitigation, and reflector sy...

متن کامل

Wavelength dependence of prepulse laser beams on EUV emission from CO2 reheated Sn plasma

Extreme ultraviolet (EUV) emission from laser-produced plasmas (LPP) centered at 13.5 nm is considered a leading candidate for the light source in future lithography systems. Tin is currently the best material for generating this EUV emission since it emits strongly within the 13.5 nm region due to its various ionic states (SnSn). Highly efficient and low-debris LPPs are a pre-requisite for the...

متن کامل

Laser produced plasma sources for nanolithography—Recent integrated simulation and benchmarking

Photon sources for extreme ultraviolet lithography (EUVL) are still facing challenging problems to achieve high volume manufacturing in the semiconductor industry. The requirements for high EUV power, longer optical system and components lifetime, and efficient mechanisms for target delivery have narrowed investigators towards the development and optimization of dual-pulse laser sources with hi...

متن کامل

Optimum Pre-pulsing and Target Geometry of LPP for Efficient EUV and BEUV Sources

Light sources for extreme ultraviolet Lithography (EUVL) are continued to face challenges in the demanding performance for high volume manufacture. Currently EUV and beyond EUV (BEUV) community are focused on the dual-pulse laser produced plasma (LPP) using droplets of mass-limited targets. These systems require extensive optimization to enhance the conversion efficiency (CE) and increase compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010